Does OH Trace the Diffuse (CO-Dark) Molecular Gas?

Paul F. Goldsmith

Jet Propulsion Laboratory, California Institute of Technology

"OH What a Lovely Molecule Workshop"

April 2018

Basic OH Chemistry in Diffuse Clouds

- Initial production of ions by cosmic rays
- Sequence of reactions leads to OH whether in diffuse atomic or diffuse molecular regions
- Some temperature sensitivity for key charge-exchange reaction

$$O^+ + H_2 \rightarrow OH^+ + H$$
 $k = 10^{-9} exp(-232/T_k) cm^3 s^{-1}$

- Molecular hydrogen required, but this is dominant form of hydrogen in ISM once visual extinction > few tenths mag. with standard ISRF
- OH destroyed primarily by photodissociation in low-extinction regions of the ISM

Simplified Schematic of OH Chemistry in Diffuse Clouds

```
H + CR \rightarrow H^+ + e^- starting point in primarily-atomic regions
H_2 + CR \rightarrow H_2^+ + e^- primarily, but also \rightarrow H + H^+ + e^-
H^+ + O \longrightarrow O^+ + H k = 10^{-9} exp(-232/T_k) [sets temperature dependence of OH abundance]
O^+ + H_2 \rightarrow OH^+ + H depends on H2 abundance
OH^+ + H_2 \rightarrow H_2O^+ + H
OH^+ + e \rightarrow O + H
H_2O^+ + e \rightarrow OH + H_2 importance depends on fractional ionization
H_2O^+ + H_2 \rightarrow H_3O^+ + H  k = 10^{-3} * k_{dissoc\ recomb} so dominates if X(e) < 10^{-4} (only C<sup>+</sup> providing e)
H_3O^+ + e \rightarrow OH + H + H  (also \rightarrow OH + H_2; H_3O^+ + H_2 is endothermic)
OH + hv \rightarrow O + H continuum photodestruction; rate ~3.9x10<sup>-10</sup>exp(-A<sub>v</sub>)
OH + O \rightarrow O<sub>2</sub> + H [not so important for OH but critical for making O<sub>2</sub>]
OH also destroyed by reactions with He<sup>+</sup>,C<sup>+</sup>,C, ....
```

Meudon PDR Code Employed to Evaluate OH Abundance Under Different Conditions

- All runs have total extinction equal to 10 mag
- ISRF is standard ($G_0 = 1$) or 10x standard ($G_0 = 10$)
- Hydrogen nucleus density, n_H, is 50 cm⁻³ or 100 cm⁻³
- Standard cosmic ray rates throughout; no enhanced rate at cloud edges as indicated by e.g. H₃⁺ and other chemical tracers
- Standard grain properties
- Depleted sulfur abundance in accordance with most modeling

Key Aspects of Code Output

For standard ISRF, H-H $_2$ transition occurs at A $_v$ $^{\circ}$ 0.1 mag: hydrogen is largely atomic throughout TK $^{\circ}$ 25 K for A $_v$ > 1 mag (a little low) but rises to 200 K at cloud edge

Chemistry:

 C^+ is dominant form of carbon for $A_v < 2$ mag

 $X(CO) = 1.6 \times 10^{-4} \ \text{in interior of cloud but} \\ \text{drops precipitously to 8x10$^{-8} for $A_v < 1$ mag} \\ \text{OH abundance relatively constant at} \\ 1.2 \times 10^{-8} \ \text{THROUGHOUT 0.05 mag} < A_v < 3 \ \text{mag}$

OH is a more unbiased tracer than CO of regions with $A_v < 3$ mag

OH is remarkably resilient tracer of total hydrogen nucleus density throughout the range $0 < A_v < 3$ mag., according to chemical modeling

Higher temperature at cloud edge for higher G0 increases formation rate but also the photodestruction rate

No substantial variation – unlike CO which depends on self-shielding for protection against line photodissociation, and C⁺ which disappears when CO builds up.

Higher density pushes H^0/H_2 transition to lower A_v , compensating the effect of higher G_0 .

Four Diffuse Molecular Clouds Studied in [CII] Emission (SOFIA upGREAT) by Goldsmith et al. ApJ, 2018

- Lines of sight towards quasars providing background for cm spectral line observations
- H^o column density from 21cm (AO Millenium Study; Heiles & Troland 2003)
- Total hydrogen nucleus column density N(H⁰)+2N(H₂) from visual extinction (Planck; Ade et al. 2016)
- Assuming carbon fractional abundance and with kinetic temperature known from 21cm absorption/emission data, the observed [CII] emission can be converted to volume density and thermal pressure

Black = [CII] 158 μ m; Blue = Gaussian fit; Red = 21 cm absorption $0 \le (1-e^{-\tau}) \le 1.1$

- [CII] is weak; average 14 pixels of upGREAT array to get detections in 3+ of four sources
- The [CII] emission agrees well with strongest component of HI CNM absorption

$$n(H^0) = 4.6 \times 10^{18} (100/T_k)^{0.14} e^{91.21/T_k} X^{-1}$$

$$X = \frac{N(C^{+})}{\int T_{\rm mb} dv} \, \rm cm^{-2} (K \, km \, s^{-1})^{-1},$$

Source	CNM + WNM°	N(H ⁰) CNM ^f	CNM v([C II]) ^g 4	$N_{\rm H}^{\ m b}$	A_{ν}^{c} (mag)	2N(H ₂)	f(v([C II]) ^d CNM 8	2N(H ₂) ν([C II])	Molecular Fraction $f(H_2)$ 10
1	2			5	6				
3C109	20.8	15.5	11.5 ^h	35.2	1.88	14.4	0.74	10.6	0.48
3C131	28.6	11.3	7.1 ⁱ	51.5	2.75	22.9	0.63	14.4	0.67
3C142	22.0	8.1	7.1 ^j	22.8	1.22	0.9	0.87	0.8	0.10
3C410	48.2	15.4	7.1 ^k	78.8	4.21	30.6	0.46	14.1	0.66

		$\int T_{\rm mb} dv $ (K km s ⁻¹)	H ⁰ only				H ⁰ and H ₂			
Source 1	T _k ^a (K) 2		N(C ⁺) ^b	X ^{c,d} (ⁱ) 5	n ^{d,e} (cm ⁻³)	P _{th} /k ^{d,f} (cm ⁻³ K)	N(C ⁺) ^g	X (¹) 9	n ^h (cm ⁻³) 10	P _{th} /k (cm ⁻³ K)
3C109	73	0.290 ± 0.072	1.9	6.48.5	2733	1970 ²⁴³⁰ ₁₄₅₀	3.6	1216	1519	1110 ¹⁴⁰⁰ ₈₄₀
3C131	45	0.476 ± 0.055	1.1	$2.4_{2.2}^{2.7}$	170_{150}^{200}	77906900	3.5	$7.3^{8.2}_{6.5}$	63_{55}^{71}	2860 ³²¹⁰ ₂₄₈₀
3C142	49	0.681 ± 0.162	1.1	$1.7^{2.2}_{1.4}$	210_{160}^{270}	10440^{13090}_{7770}	1.3	$1.8^{2.4}_{1.5}$	190_{150}^{250}	9360^{12000}_{7150}
3C410	59	0.160 ± 0.066	1.1	$7.2_{5.1}^{12.2}$	3347	1970_{1130}^{2790}	3.4	21 ³⁶	13 ¹⁸ ₈	750^{1070}_{440}

- Clouds show a wide variety of density and thermal pressure
- Overall, results are reasonably consistent with expectation for diffuse molecular clouds and ISM physics
- Details depend on assumptions about mixing of H⁰ and H₂

OH Also Observed in the AO Millenium Survey

Thanks to C. Heiles for providing data

- Absorption is very sensitive compared to emission since T_A proportional to T_{BG} rather than Tex, and Tex is only a few K while T_{BG} can be ~100 K with Arecibo
- High signal to noise ratio allows disentangling multiple velocity features along LOS
- OH features detected in 3 of 4 sources
- Velocities and widths generally agree with [CII] but some interesting differences relative to HI
- Calculate OH column density:
 - Assume optically thin
 - Ignore population of levels above J = 3/2. This is reasonable given ~120 K energy above ground state, and n_{crit} ~ few thousand cm⁻³, which is >> volume density of these clouds.
 - Electron excitation may be significant
- N(OH) = $2.25 \times 10^{14} \, \text{T}_{\text{ex}} \, \int \tau \, dv$
 - The excitation temperature introduces significant uncertainty but this is minimized if we know the density and can do a statistical equilibrium calculation.

OH collisional Excitation

- This is a matter of surprising complexity. New quantum calculations by Klos et al. (2017, MNRAS, 471, 4249) treat collisions with H₂, which is dominant collision partner.
- Rate coefficients are mostly larger by factor 2-3 than those previously used (with some exceptions) resulting in smaller OH column densities
- See Klos, Lique, & Alexander (2007, Chem. Phys. Letters, 445, 12) for collisions with H⁰ (actually He)
- The excitation temperature does depend on cloud density, but has lower bound of 2.7 K, and generally does not exceed 10 K (using densities determined in 4 clouds studied.
- Adopt excitation temperature of 5 K now; this produces +/- factor of 2 uncertainty in N(OH) which could be reduced by more careful modeling

Correlations Between N(OH) and $N_H = N(H^0) + 2N(H_2)$

Adopt $T_{ex} = 5$ K for all sources

- Solid red line is eyeball fit that goes through origin $N(OH) = 10^{-8}N_H$
- Suggestion that there is a threshold for OH at present level of sensitivity at $N_H \sim 2.5 \times 10^{21}$ cm⁻² ($A_v = \sim 1.2$ mag)
- Dashed red line is eyeball it not so constrained $N(OH) = 1.6x10^{-8}[N_H 2.5x10^{21} cm^{-2}]$

THIS IS IN GOOD AGREEMENT WITH THE PREDICTION OF THE MEUDON CHEMICAL MODEL

W49: Massive GMC/Star-forming Region and Strong IR/Submm Continuum Source — BUT AN OH MASER!

Even for W49 Information on Absorption features seen in [CII] is Available

Conclusions

- OH chemistry in diffuse clouds seems reasonably well understood
- With reasonable radiation field and density, hydrogen is molecular throughout the "diffuse molecular cloud"
- Predicted OH fractional abundance $X(OH) = n(OH)/n(H_2) = 1-2x10^{-8}$
- Lines of sight to four extragalactic continuum sources, allowing examination of entire column through Milky Way
- Observed in [CII] emission, dust emission, 21 cm and OH absorption
- Modeling allows determination of density, H₂ fraction, total hydrogen column density and other parameters
- The OH fractional abundance ~2x10⁻⁸ in these sources, consistent with chemical model and confirming that OH IS A GOOD TRACER OF CO-DARK MOLECULAR GAS